R-15

II1 B.Tech II Semester
15ACS31-COMPILER DESIGN

w -
—
S =
w 0

Course Objective:
This course is a de facto capstone course in Computer Science, as it combines skills in software

design, programming, data structures and algorithms, theory of computing, documentation, and
machine architecture to produce a functional compiler.

® Realize that computing science theory can be used as the basis for real
applications Introduce the major concept areas of language translation and
compiler design. Learn how a compiler works

e Know about the powerful compiler generation tools. and techniques, which are useful to
the other non-compiler applications

o Know the importance of optimization and learn how to write programs that execute faster

UNIT -1

Overview of Compilation and Language processing:Preprocessor-Compiler-assembler-
interpreters-pre-processors-linkers and loaders-structure of a compliler'- Phases of Compilation—
Lexical Analysis, Regular Grammar andregular expression for common programming language
features, pass and Phases of translation, interpretation, bootstrapping, data structures in
compilation — LEX lexical analyzer generator.

UNIT -1I
Top down Parsing: Context free grammars, Top down parsing—Backtracking, LL (1),recursive
descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

Bottom up Parsing: Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing
,handling ambiguous grammar, YACC — automatic parser generator.

UNIT - 111
Semantic analysis :Intermediate forms of source Programs—abstract syntax tree, polishnotation
and three address codes. Attributed grammars, Syntax directed translation, Conversion of

popular e
Programming languages language Constructs into Intermediate code forms, Type checker.

/é; - (et




R-15

UNIT -1V
Symbol Tables :Symbol table format, organization for block structures languages, hashing,

treestructures representation of scope information. Block structures and non block structure
storage allocation: static, Runtime stack and heap storage allocation, storage allocation for

arrays, strings and records.
Intermediate code Generation: Intermediate languages, Declarations, Assignment statements,
Boolean expressions, Backpatching

Code optimization: Consideration for Optimization, Scope of Optimization, local
optimization,loop optimization, frequency reduction, folding, DAG representation.

UNIT -V
Data flow analysis: Flow graph, data flow equation, global optimization, redundant
subexpression elimination, Induction variable elements, Live variable analysis, Copy

propagation.

Object code generation: Object code forms, machine dependent code optimization, register
allocation and assignment generic code generation algorithms, DAG for register allocation.
Course Qutcomes :

o Able to design a compiler for a simple programming language

e Able to use the tools related to compiler design effectively and efficiently
Can write an optimized code

TEXT BOOKS:
1. Principles of compiler design -A.V. Aho .J.D.Ullman; Pearson Education. (Text book edition)

2. Modern Compiler Implementation in C- Andrew N. Appel, Cambridge University Press.
3. Compilers Principles, Techniques and Tools-Alfred V.Aho, Ravi Sethi, JD Ullman, Pearson

Education, 2007.

REFERENCES:

1. lex&yacc — John R. Levine, Tony Mason, Doug Brown, O’reilly

2. Modern Compiler Design- Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, Wiley dreamtech.
3. Engineering a Compiler-Cooper & Linda, Elsevier. Compiler Construction, Louden,

Thomson.

G G-

-
‘(; /



